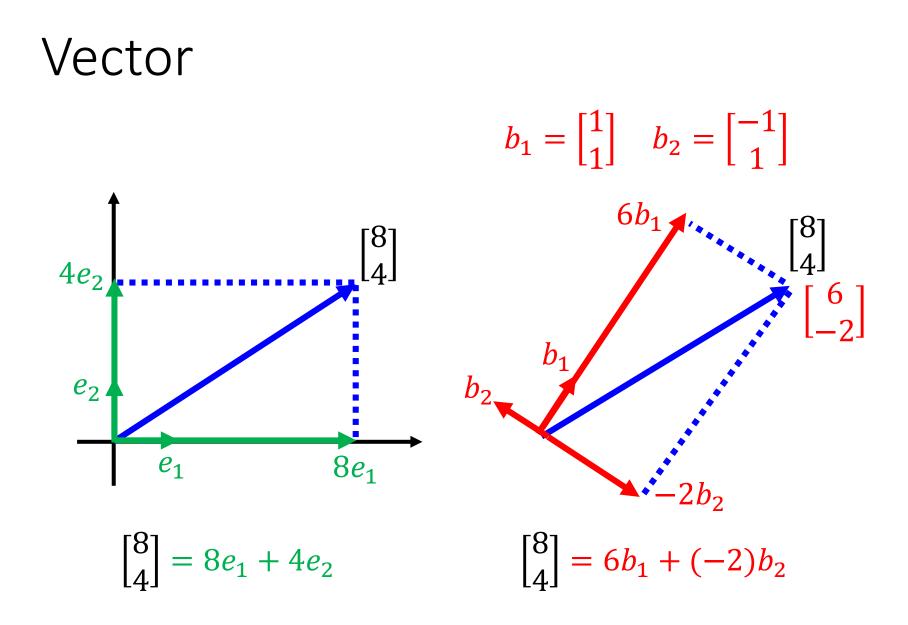
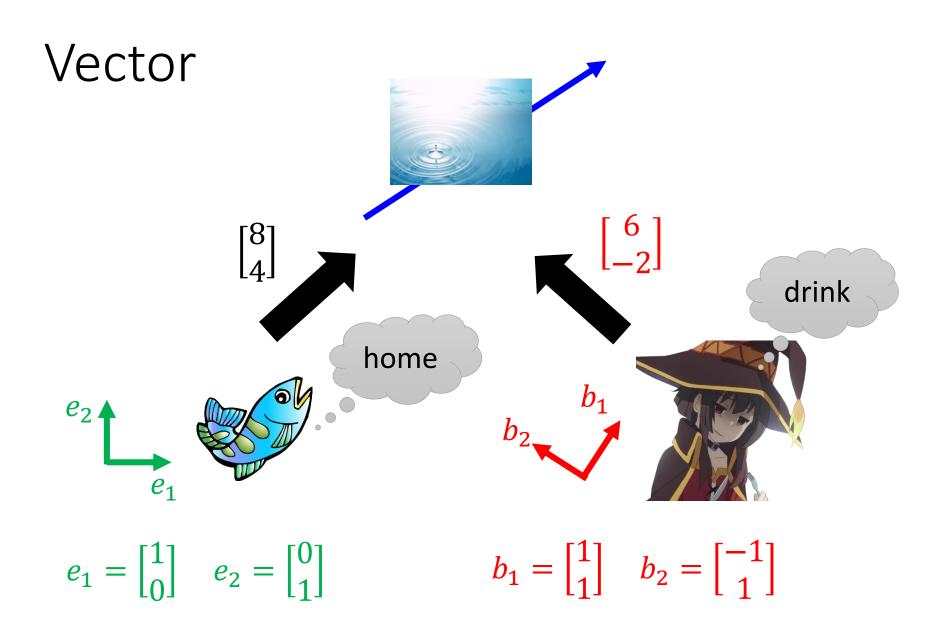
Coordinate System Hung-yi Lee

Outline

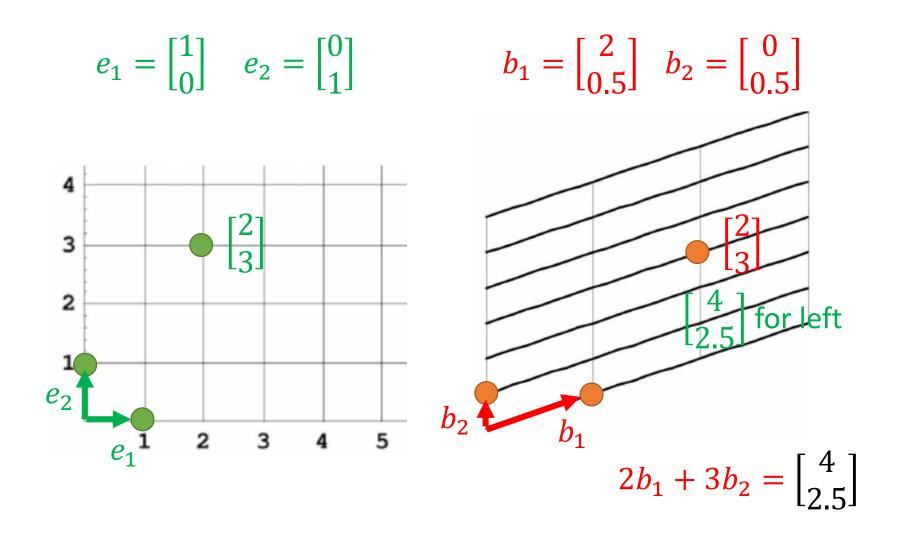
- Coordinate Systems
 - Each coordinate system is a "viewpoint" for vector representation.
 - The same vector is represented differently in different coordinate systems.
 - Different vectors can have the same representation in different coordinate systems.
- Changing Coordinates
- Reference: textbook Ch 4.4

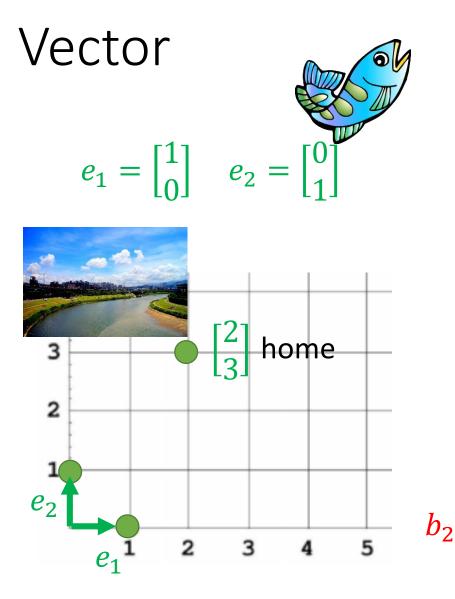
Coordinate System Using Basis to represent Vector



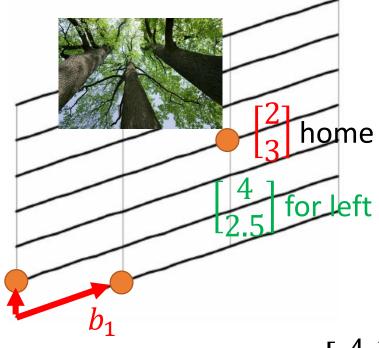


Vector





 $b_1 = \begin{bmatrix} 2\\ 0.5 \end{bmatrix} \quad b_2 = \begin{bmatrix} 0\\ 0.5 \end{bmatrix}$



 $2b_1 + 3b_2 = \begin{bmatrix} 4\\2.5 \end{bmatrix}$

Coordinate System

- A vector set *B* can be considered as a coordinate system for Rⁿ if:
- 1. The vector set ${\boldsymbol{\mathcal{B}}}$ spans the ${\mathsf{R}}^{\mathsf{n}}$

Every vector should have representation

• 2. The vector set ${\boldsymbol{\mathcal{B}}}$ is independent

Unique representation

${\boldsymbol{\mathscr{B}}}$ is a basis of ${\sf R}^{\sf n}$

Why Basis?

- Let vector set $\mathcal{B} = \{u_1, u_2, \dots, u_k\}$ be independent.
- Any vector v in Span \mathcal{B} can be uniquely represented as a linear combination of the vectors in \mathcal{B} .
- That is, there are unique scalars a_1, a_2, \cdots, a_k such that $v = a_1u_1 + a_2u_2 + \cdots + a_ku_k$
- Proof:

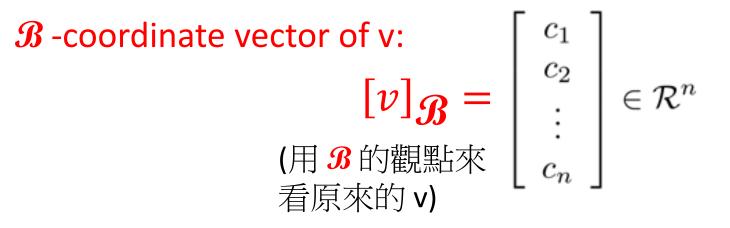
Unique? $v = a_1u_1 + a_2u_2 + \dots + a_ku_k$ $v = b_1u_1 + b_2u_2 + \dots + b_ku_k$ $(a_1 - b_1)u_1 + (a_2 - b_2)u_2 + \dots + (a_k - b_k)u_k = 0$ *B* is independent $a_1 - b_1 = a_2 - b_2 = \dots = a_k - b_k = 0$

Coordinate System

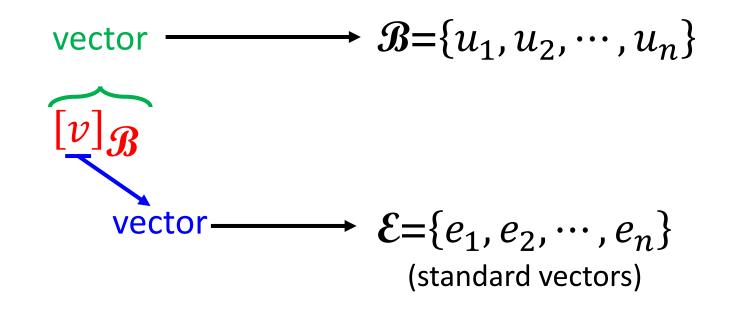
• Let vector set $\mathcal{B} = \{u_1, u_2, \cdots, u_n\}$ be a basis for a subspace \mathbb{R}^n

B is a coordinate system

• For any v in Rⁿ, there are unique scalars c_1, c_2, \cdots, c_n such that $v = c_1u_1 + c_2u_2 + \cdots + c_nu_n$



Coordinate System



E is Cartesian coordinate system (直角坐標系)

 $v = [v]_{\mathcal{E}}$

Other System \rightarrow Cartesian

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\2 \end{bmatrix} \right\} \quad [v]_{\mathcal{B}} = \begin{bmatrix} 3\\6\\-2 \end{bmatrix}$$
$$v = 3 \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} + 6 \begin{bmatrix} 1\\-1\\1\\1 \end{bmatrix} - 2 \begin{bmatrix} 1\\2\\2 \end{bmatrix} = \begin{bmatrix} 7\\-7\\5 \end{bmatrix}$$
$$\mathcal{C} = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix}, \begin{bmatrix} 7\\8\\9 \end{bmatrix} \right\} \quad [u]_{\mathcal{C}} = \begin{bmatrix} 3\\6\\-2 \end{bmatrix}$$
$$u = 3 \begin{bmatrix} 1\\2\\3 \end{bmatrix} + 6 \begin{bmatrix} 4\\5\\6 \end{bmatrix} - 2 \begin{bmatrix} 7\\8\\9 \end{bmatrix} = \begin{bmatrix} 13\\20\\27 \end{bmatrix}$$

Other System \rightarrow Cartesian

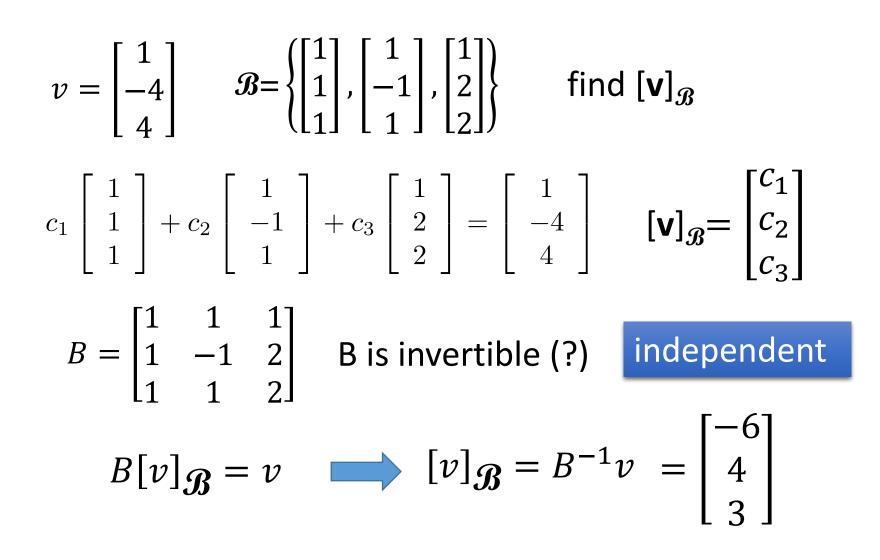
- Let vector set B={u₁, u₂, …, u_n} be a basis for a subspace Rⁿ
- Matrix $B = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix}$

Given $[v]_{\mathcal{B}}$, how to find v? $[v]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$

 $v = c_1 u_1 + c_2 u_2 + \dots + c_n u_n$

 $= B[v]_{\mathcal{B}}$ (matrix-vector product)

Cartesian \rightarrow Other System



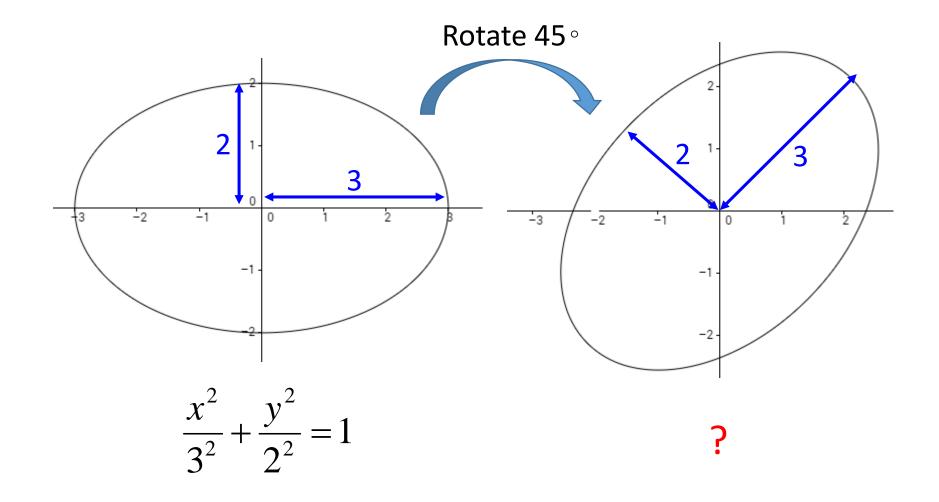
Cartesian ↔ Other System

• Let $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_n\}$ $[v]_{\mathbf{R}} = B^{-1}v$ $\begin{bmatrix} v \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \end{bmatrix}$ $v = B[v]_{\mathcal{B}}$ $= c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2 + \cdots + c_n \mathbf{b}_n$

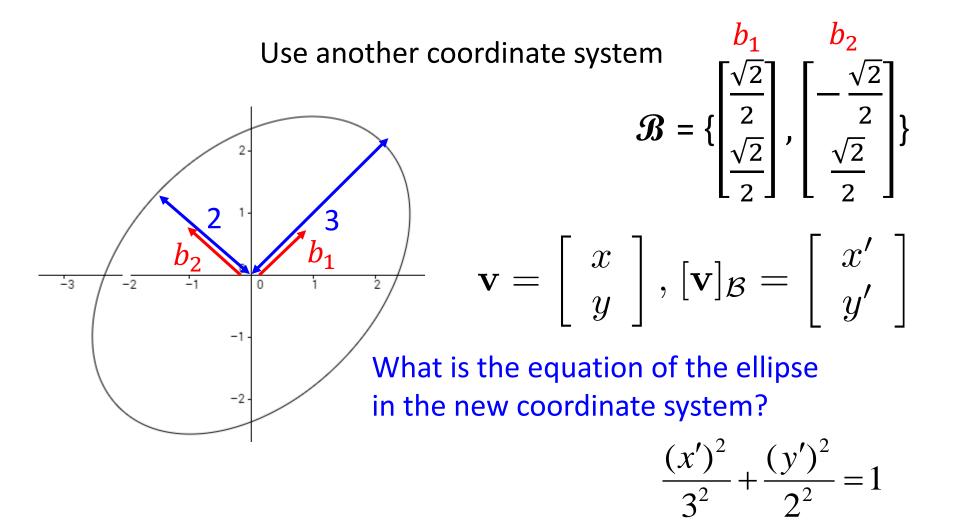
Let $\mathcal{B} = \{b_1, b_2, \dots, b_n\}$ is a basis of \mathbb{R}^n . $[b_i]_{\mathcal{B}} = ? e_i$ (Standard vector)

Changing Coordinates

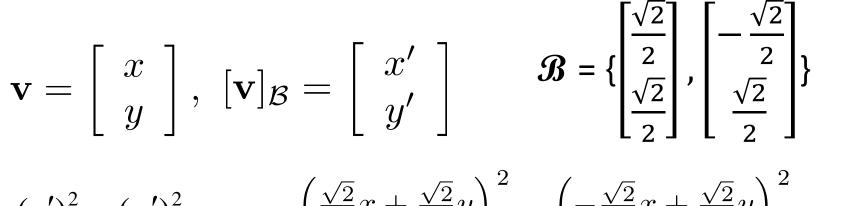
Equation of ellipse



Equation of ellipse



Equation of ellipse

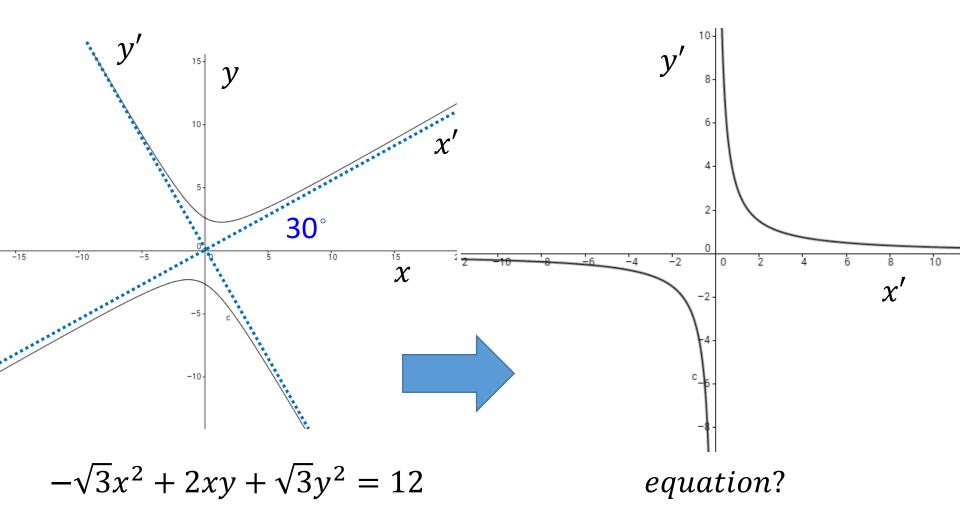


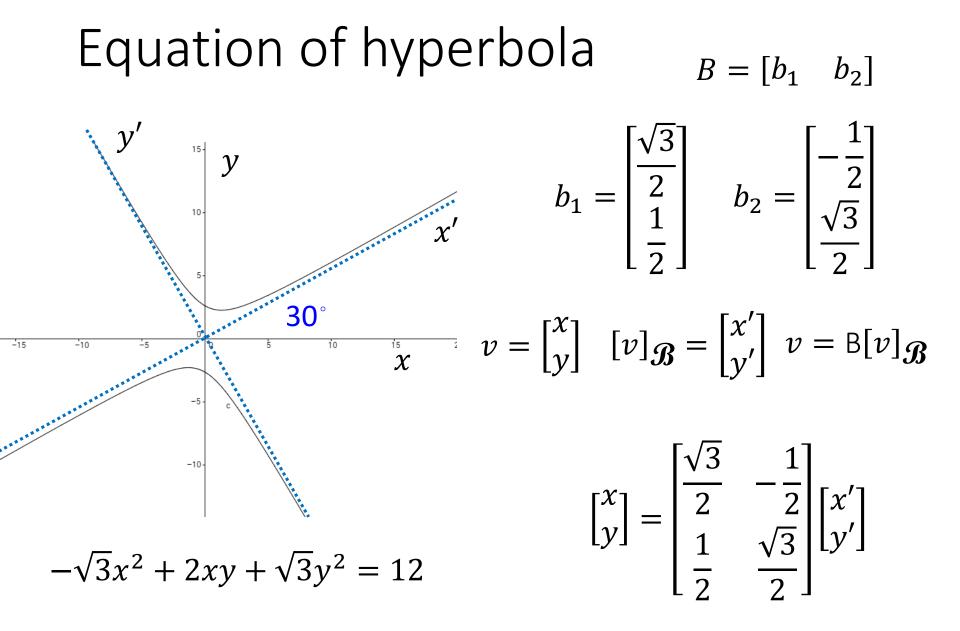
$$\frac{(x')^2}{3^2} + \frac{(y')^2}{2^2} = 1 \implies \frac{\left(\frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y\right)}{3^2} + \frac{\left(-\frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y\right)}{2^2} = 1$$

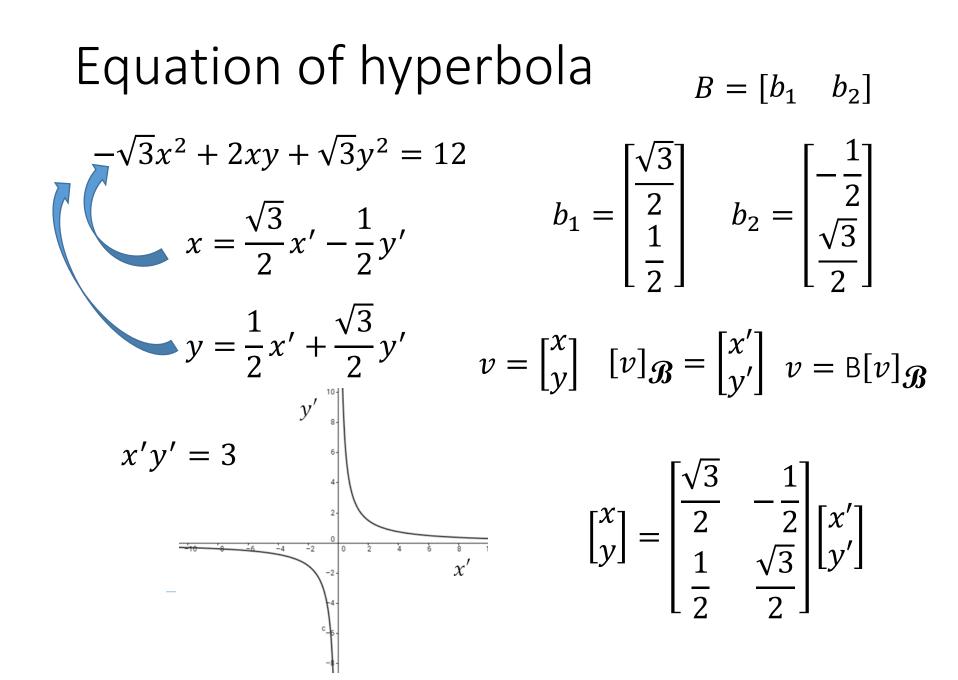
$$[\mathbf{v}]_{\mathcal{B}} = B^{-1}\mathbf{v}$$

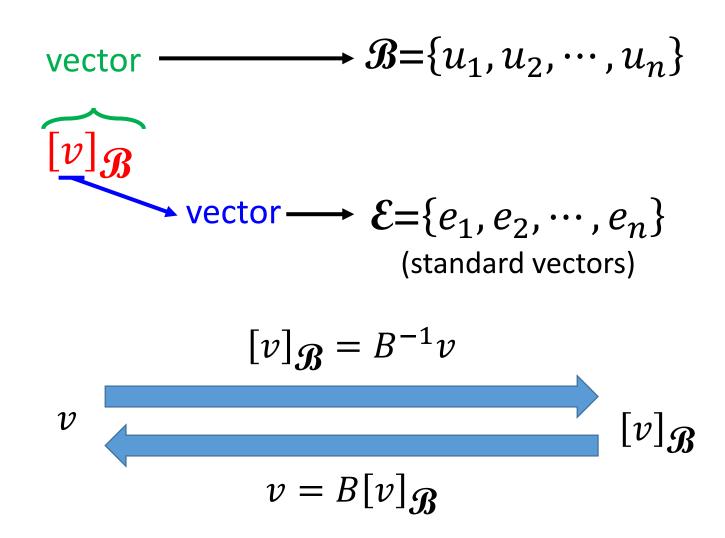
$$\left[\begin{array}{c} x'\\y'\end{array}\right] = B^{-1} \left[\begin{array}{c} x\\y\end{array}\right]$$

Equation of hyperbola









Appendix

Linear Algebra Review– Section 4.4 in one page

Given a basis $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_n\}$ for the vector space \mathcal{R}^n .

Thm 4.10: Any vector $\mathbf{v} \in \mathcal{R}^n$ can be uniquely expressed as a linear combination of $\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_n$. That is,

$$\mathbf{v} = c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2 + \dots + c_n \mathbf{b}_n$$

Definition: $[\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} c_1 & c_2 & \cdots & c_n \end{bmatrix}^T$ is called the **coordinate vector** of **v** relative to \mathcal{B} , or the \mathcal{B} -coordinate vector of **v**.

Thm 4.11:
$$[\mathbf{v}]_{\mathcal{B}} = B^{-1}\mathbf{v}$$
 where $B \triangleq \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_n \end{bmatrix}$.

